
KOMPARE: Symbolic Execution for Assured Patching

by

Musa Haydar

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
(Computer Science and Engineering)

in the University of Michigan
2023

Master’s Thesis Committee:

Professor Baris Kasikci, Chair
Professor Kevin Leach
Professor Manos Kapritsos

Musa Haydar

musah@umich.edu

© Musa Haydar 2023

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my thesis advisor, Professor Baris Kasikci, to
whom I can attribute considerably my academic and professional development for the opportunities
and support he has given me these past two years.

I would also like to thank my mentors: Marina Minkin, who provided a great deal of support and
guidance throughout the process of this thesis, and Ian Neal, who contributed invaluable feedback
and technical expertise to this project. I would also like to thank this master’s thesis committee for
their time and feedback.

Finally, I’d like to thank my brothers, Ibrahim and Eissa, who constantly inspire me, and my
parents, family, and friends for all their unwavering encouragement.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

ABSTRACT . iv

CHAPTER

1 Introduction . 1

2 Background . 3

2.1 Symbolic Execution . 3
2.2 Symbolic Execution for Patch Verification . 5

3 Design of KOMPARE . 8

3.1 Patch-Directed Symbolic Execution . 10
3.1.1 Instruction Equivalence . 12
3.1.2 Assigning Weights and Priorities . 13

3.2 KOMPARE’s Comparison Analysis . 14
3.2.1 Removed Program Paths . 14
3.2.2 Concrete Executions and Output Comparison 15

4 Implementation of KOMPARE . 16

4.1 KOMPARE Driver . 16
4.2 Patch-Directed Symbolic Execution . 17

5 Evaluation . 19

5.1 Contrived Example . 20
5.2 Embedded Systems Patching Benchmarks . 22

5.2.1 Logging Functionality Patches . 23
5.2.2 Transport Protocol Vulnerability Patches 24

6 Discussion . 25

6.1 Improvements to KOMPARE’s Analysis . 25
6.1.1 Output Comparison . 26

6.2 Pruning Execution Paths . 27

7 Conclusion . 29

BIBLIOGRAPHY . 30

iii

ABSTRACT

Patches are often applied to systems in deployment to quickly resolve bugs and remove vul-
nerabilities. However, patch verification is a challenge: ideally, a patch should fix the intended
issue without introducing new bugs or changing the program’s behavior in unintended ways. Sym-
bolic execution is a testing technique which can be used to verify these proprieties of the patch by
considering the behavior of the program along the many possible execution paths.

This thesis presents KOMPARE, a tool which leverages symbolic execution to compare two ver-
sions of a program for patch verification. We reason that two programs which behave the same
for a given input will either produce identical outputs or fail on the same errors. Thus, to verify a
patch, KOMPARE performs symbolic execution on a patched program to generate program inputs.
Then, concrete executions are performed using the generated inputs on both the patched and orig-
inal versions of the program. During these concrete executions, KOMPARE records and compares
the externally visible outputs of the program to determine if the behaviors of the two versions
match. We reason that the code paths we are interested in analyzing are those which execute or
lead to the execution of code modified by the patch. Thus, to increase the efficiency of KOMPARE’s
analysis, we present Patch-Directed Symbolic Execution, a technique used by KOMPARE to drive
symbolic execution towards modified code. On initialization, KOMPARE performs a static analysis
to determine the differences between the two versions, computing priorities for execution states
which are used when selecting states during symbolic execution.

We evaluate KOMPARE on an example of a custom patch to the COREUTILS program Echo to
demonstrate its comparison analysis and the effectiveness of Patch-Directed Symbolic Execution.
We then use KOMPARE to analyze benchmark patches for the embedded vehicle control systems.
We find that KOMPARE is successfully able to verify that these patches both correct the vulnera-
bilities while preserving the original functionality of the benchmarks.

iv

CHAPTER 1

Introduction

When software bugs and vulnerabilities are found in critical systems, fixing them quickly can
be crucial. Often, this involves the application of a software patch—a set of modifications to
a program—to a system in deployment. Ideally, a correct patch should maintain the following
properties: first, the patch should fix the intended bug or vulnerability or otherwise cause the
intended change to the program’s functionality. Secondly, the patch should not introduce any new
instruction-level bugs or failures in the program. Thirdly, the patch should not alter the program’s
behavior in unintended ways, causing regression bugs or other program behavior bugs. However,
verifying that a patch is correct on all three of these criteria is a challenge. It’s possible, for
instance, to test a program under concrete test cases which achieve high or total branch coverage
without exploring the new behavior introduced by the patch [8].

Symbolic execution [1] is a software analysis technique which may be leveraged to verify the
correctness of a patch in these regards. Under symbolic execution, a program is executed using
symbolic variable values in the place of concrete values. During the program’s execution, as each
path is explored, constraints are collected which express the possible values that each symbolic
value may hold. Then, when a potentially failing instruction is reached or an execution path termi-
nates, these constraints may be solved to determine a concrete input that would cause the particular
path to be executed or failure to be produced. Symbolic execution thus enables the exploration and
analysis of all paths in a program and automates the generation of inputs which do so.

Many tools have been created which leverage symbolic execution to verify that patches do
not introduce failures to the program or to expand code coverage of an existing test suite to in-
clude the added code [6, 8, 9, 12, 13], which is the first of our desired properties. Some of these
techniques have been further applied to cross-check functions or differing versions of a program
[5, 11]. However, this work is limited, either to the function level or in requiring manual compar-
ison by the developer. Furthermore, there are some challenges in symbolic execution which need
to be addressed. For instance, path explosion occurs when the number of paths to explore grows
exponentially with the number branches in the program. Prior work addresses this issue in various
problem domains by directed symbolic execution towards code that is more likely to give useful

1

results [6, 7, 9, 10, 14]. Similarly, in verifying that the patch has not changed the program behavior,
we are especially interested in exploring regions of code which have been modified by the patch.

Symbolic execution enables the analysis of each path through a program which can then be
used to reason about the patch’s impact on the possible program behaviors. This thesis presents
KOMPARE, a tool built upon the KLEE [2] symbolic execution engine which leverages symbolic
execution for automated program comparison. KOMPARE first symbolically executes a program to
generate concrete inputs which exercise the program’s behaviors or cause it to fail. Then, KOM-
PARE performs concrete executions on both versions of the program (the patched/modified version
and the orignal version), recording all externally visible outputs to determine if the behavior of the
program has been altered by the patch.

By providing KOMPARE with an output comparison function which accounts for the expected
differences caused by a patch or which verifies the correctness of the output, KOMPARE is able
to verify that the patch causes the correct change in the program’s behavior (the first criteria).
Additionally, in exploring all paths through the program, KOMPARE is able to find new bugs and
program failures introduced by the patch (the second criteria). Finally, the key contribution of
KOMPARE is that, by comparing the outputs of the program along each execution path discovered
under symbolic execution, KOMPARE is able to verify that the patch does not alter the program’s
behavior in any unintended ways (the third criteria).

This thesis additionally presents Patch-Directed Symbolic Execution, a technique to prioritize
the execution and analysis of code modified by the patch. KOMPARE uses Patch-Directed Symbolic
Execution to drive symbolic execution towards the desired code by selecting states which have
executed or will lead to the execution of modified code. We find that, for patches which cause
differences to occur in the outputs of a program, Patch-Directed Symbolic Execution allows those
differences to be discovered by KOMPARE sooner, as compared with KLEE’s default exploration
strategy.

The remainder of this thesis is organized as follows: in §2, we introduce symbolic execution and
its associated challenges, as well as examine previous work which has applied symbolic execution
towards patch verification. In §3, we present the design of KOMPARE’s program comparison anal-
ysis. We also present the Patch-Directed Symbolic Execution algorithm, which performs a static
analysis of program difference and then assigns priorities to code which has been modified by the
patch. In §4, we discuss the implementation of KOMPARE as a new driver for the KLEE symbolic
execution engine and the implementation of Patch-Directed Symbolic Execution as an extension
to KLEE. In §5, we evaluate KOMPARE using a custom example patch to the COREUTILS program
Echo. Then, we use KOMPARE to analyze benchmark patches to embedded systems. Finally, in
§6, we discuss some of the limitations, possible improvements, and future work for KOMPARE,
and in §7 we conclude.

2

CHAPTER 2

Background

This chapter provides a brief introduction to symbolic execution, followed by a discussion of prior
work which applies symbolic execution towards patch verification. We find that many of the tools
which use symbolic execution for patch verification either verify that no new failures are caused
by the patch or simply use symbolic execution to generate test cases which exercise the modified
code. This motivates the design of KOMPARE, a new tool which additionally verifies that the patch
does not unexpectedly alter the program’s behavior.

2.1 Symbolic Execution

Symbolic execution is a technique by which we execute a program using symbolic values as inputs
to the program in the place of concrete ones. These symbolic values express the possible values
the variables may hold throughout the program’s execution. During symbolic execution, a sym-

bolic store maintains a mapping from variables to their respective symbolic expressions. As the
program is executed, these symbolic expressions are updated per the program’s instructions which
operate on them. Then, at each branching instruction, constraints are formulated which describe
the conditions that must have been satisfied by the symbolic values along each execution path, and
each path is executed in turn. Eventually, these constraints are solved to determine what concrete
input would cause a particular path or be executed and to determine if any concrete input to the
program may cause errors in potentially dangerous instructions or violate program assertions [1].

Consider the example program in Listing 2.1. Under symbolic execution, this function will
may be executed with a symbolic value for the input x, for instance, x = λ. After executing line
2, the symbolic store will be updated to contain z = λ + 10, since the value of z is computed
using a symbolic value. Then, the execution will reach the branching condition on line 3, for
which we have two possible states to explore. In the first, the execution state will maintain the
constraint that z > 100 (or λ + 10 > 100), and in the second, that z ≤ 100. These branches are
then executed independently. Both lines 4 and 6 contain potentially dangerous instructions: if the

3

1 int func (int x) {
2 int z = x + 10;
3 if (z > 100) {
4 return 2 / z;
5 } else {
6 return 10 / z;
7 }
8 }

Listing 2.1: A simple function in C.

value of z is zero, a division-by-zero error will occur. For the first of these, solving the constraints
determines that z cannot have the value 0 along that execution path, and so this error will never
occur. However, solving constraints for z collected up to and including line 6 will reveal that the
value of λ being −10, or the input x = −10, will produce this error. In contrast, an input with the
value x = −8 will not produce an error.

There are some challenges in classical symbolic execution, and much work has been done to
alleviate these challenges generally or within specific problem domains. One such challenge is
state space explosion, also called path explosion. Under symbolic execution, each branch in the
program may fork the execution, such that there are two or more possible paths with their own
path constraints to consider, and the number of paths to be explored may grow exponentially [2].
Some techniques mitigate this challenge by directing symbolic execution towards desirable paths
or by pruning undesirable ones [1]. For example, AGAMOTTO [7] is a tool which uses symbolic
execution to search for bugs in persistent memory systems. To do so more effectively than classical
symbolic execution, AGAMOTTO directs symbolic execution towards locations in the code which
may access persistent memory and may therefore contain this kind of bug.

A technique which has been used to effectively test large, real world systems which are more
likely to incur path explosion, is under-constrained symbolic execution. By analyzing individual
functions under symbolic execution instead of entire programs, UC-KLEE [11] is able to effectively
verify patches to functions in libraries such as OpenSSL and in the Linux kernel. However, missing
preconditions on entry to these functions causes UC-KLEE to report false positives when analyzing
a function.

Another major obstacle in symbolic execution is constraint solving: the satisfiability problem
is known to be NP-Hard. Although much work has gone into improving the state-of-the-art SMT
solvers used by symbolic execution engines such as KLEE [2], complex constraints, such as those
involving non-linear arithmetic, continue to pose a challenge [1]. When execution becomes stuck
on a constraint which takes too long to solve, a technique known as concretization, where some
portion of the symbolic input is instead made concrete, may be employed to enabled the execution
to proceed. Concretizing symbolic values reduces the complexity of the constraints possibly at the

4

expense of soundness, as certain paths through the program will not be explored.
The technique of guiding the symbolic execution to desired paths by substituting symbolic val-

ues for concrete ones is known as dynamic symbolic execution. The DART [4] engine, for instance,
executes a program both concretely (under randomly generated test inputs) and symbolically, us-
ing the values discovered during concrete execution to direct symbolic execution to explore all
paths. Similarly, Execution Reconstruction (ER) [14] reproduces system failures under symbolic
execution by iteratively concretizing values when execution stalls due to the symbolic constraints
becoming too complex for the solver. In each iteration, ER identifies a candidate constraint to be
concretized, traces an execution of the program to record concrete values, and repeats the analysis
until the constraints no longer stall execution and a test case is generated.

Another challenge in symbolic execution involves code which interacts with the environment,
such as through operating system calls, file input/output, or network code. A straightfoward ap-
proach which some symbolic execution techniques take is to execute the external system calls
directly, using the concrete results during the subsequent symbolic execution [1]. Ideally, these
interactions should be considered symbolically as well, so as to consider all possible resulting val-
ues. KLEE addresses this issue by modelling these interactions in C code that “understands the
semantics of the desired action well enough to generate the required constraints” [2].

2.2 Symbolic Execution for Patch Verification

When verifying the correctness of a patch, we seek to demonstrate that the patch makes the in-
tended change to the program’s behavior, that the patch does not introduce any new bugs or fail-
ures, and that the patch does not alter the program’s behavior in any unintended ways. Some work
has been done in the domain of applying symbolic execution towards patch verification, much of
which in seeking to verify that no new code bugs are introduced by the patch by generating test
cases which explore the modified code.

One work which applies symbolic execution towards patch verification is Directed Incremental
Symbolic Execution (DiSE) [9, 13]. DiSE extends classical symbolic execution with insights about
software patching to increase the efficiency of analyzing a program. The authors present a static
analysis which characterizes the differences between two versions of a program by discovering the
set of nodes in the control flow graph (CFG) which have been impacted by the change. Specifically,
they consider all CFG nodes which have been added or removed by the change as impacted, and
nodes which are control flow or data dependant on an impacted node are marked as impacted as
well. DiSE then uses the results of this analysis to generate path constraints for the impacted code,
leveraging them so as to only explore paths in the program that are impacted by the change. Finally,
in considering these generated path constraints, DiSE is also able to prune execution paths which

5

differ only in their sequence of unimpacted nodes, thereby reducing the total cost of the symbolic
analysis. By directing symbolic execution towards impacted code, DiSE is able to effectively
generate test cases which exercises the modified code, which can then be added to a regression
suite, thus verifying that the patch does not introduce any new bugs.

Another tool, called KATCH [6] similarly applies symbolic execution with the goal of generating
test cases which increase the coverage to include patched code in an existing test suite. Like
DiSE, KATCH directs execution towards “target” lines of code, targeting reachable code not already
covered by the system’s existing regression test suite. They observe that only one target is needed
per basic block (containers of sequential instructions), since all the code in a basic block must
execute together. Then, beginning execution with a seed input, KATCH selects paths to explore in
the program by estimating which paths have the shortest distance to the target code. The novelty in
KATCH’s approach is in informed path regeneration and definition switching. If a path towards the
target becomes infeasible during symbolic execution, and it depended on a symbolic value, then
KATCH backtracks to the branch which added the constraint and continues exploration with the
corrected branch conditions. If the path became infeasible due to a concrete value, KATCH attempts
to find an alternate definition for the offending variable. Thus, KATCH is able to effectively and
automatically increase the coverage of a regression suite to include code modified by a patch.

KPSec [10] is another tool which takes a similar approach in the domain of patch security
testing. Many patches introduce vulnerabilities in code systems due to, for instance, potential
memory leaks, dangling pointers, or use of initialized memory. To verify a patch for these kinds of
errors, KPSec generates execution paths through the program via a data-flow analysis, using these
results to drive symbolic execution towards potential “security points” in the program.

The tools and techniques discussed so far improve the efficiency of their symbolic program
analyses by targeting execution towards patch code and thereby demonstrating that the patch does
not introduce instruction-level or program assertion failures. While this is an important aspect
towards patch verification, we also seek to determine that a patch does not alter program behavior
in unintended ways, a problem which requires analysis beyond the code modified by the patch
itself. To achieve this, we might consider how two versions of a program can be cross-checked,
such that, on each input, the versions produce the same behavior.

Under-constrained symbolic execution is a technique which has been shown to effectively ver-
ify patches in real-world code. By operating at a function level instead of a program level, UC-
KLEE [11] is not only able to find new crashes introduced by a patch within each function, but
to reason about function equivalence. In particular, they perform cross-checking of two differing
implementations of a function, where the two versions share the same interface and output for-
mats. Furthermore, the authors reason about error equivalence: they find that real-world programs
tend to crash on the same illegal inputs between the versions [12]. This is useful for ensuring

6

identical behavior between different implementations of functions which share the same interface
or between an optimized program against a reference implementation. While limiting their cross-
checking to the function level enables UC-KLEE to effectively analyze large, real-world libraries
and systems, their technique cannot determine if the intended changes to a given function’s out-
put affects the behavior of a program which uses this function in unintended ways. Furthermore,
UC-KLEE produces false-positive bug reports due to missing input preconditions when evaluating
functions independently [11].

Another symbolic execution technique for patch verification is shadow symbolic execution,
implemented in the tool SHADOW [5, 8]. SHADOW takes the two versions of the program and
unifies them into a single binary, with annotations inserted in the code locations where the versions
differ. Then, SHADOW symbolically executes this unified binary, using a combination of symbolic
and concrete inputs. Until the annotations are reached, the path constraints and symbolic stores
for both versions of the program are identical, so they are maintained once for both versions.
Then, upon reaching the annotated branches, the execution forks in what SHADOW calls “four-
way forking,” which explores both the divergent path conditions as well as the divergent code
between the two program versions. This enables shadow to effectively consider all paths up to
the modified code only once, and then thoroughly explore all the paths which differ between the
versions. Furthermore, by unifying the symbolic execution, SHADOW is able to both effectively
share execution state data between these divergent paths and prune irrelevant paths, thus improving
the space and time efficiency of their analysis, respectively.

Once the test cases are generated by SHADOW, the tool is able to cross-check the two versions of
the program to find any differences in their externally visible outputs. This cross-checking requires
manual inspection by the developers to reason whether the differences in output are expected or
occurrences of newly introduced bugs. Additionally, SHADOW’s cross-checker requires the pro-
grams be executed natively. This requires more overhead from the user; one of the advantages of
simulating a program in symbolic execution, such as in the KLEE [2] engine, is that it does not
require any specific hardware where native execution might.

These techniques discussed are able to effectively generate tests which exercise the modified
code and verify that no new failures are introduced by the patch. However, these techniques can not
verify that the patch does not unexpectedly alter the program’s behavior. Works which additionally
cross-check function or program versions are limited. This inspires the design of KOMPARE: our
goal is to automate the cross-checking of program behavior on all paths, using symbolic execution
to generate concrete inputs which enable this. To increase the efficiency of its analysis, KOMPARE

also prioritizes the execution of modified code similar to previous work. Unlike DiSE, KOMPARE

completes symbolic execution on all subsequent paths after having executed modified code to
verify that the paths behave as expected.

7

CHAPTER 3

Design of KOMPARE

Prior work has explored techniques by which symbolic execution can be used to effectively seek
out new bugs introduced by a patch [6, 8, 9, 11]. While such techniques may ensure that new
bugs (such as memory errors or program assertion failures) are not caused by the modified code,
they do not assure that the patch has not altered the program’s behavior in unintended ways. In
this chapter, we discuss the design of KOMPARE, a tool which builds upon the KLEE [2] symbolic
execution engine, utilizing symbolic execution to cross-check the patched and original versions of
the program to verify the aforementioned properties for a patch.

The UC-KLEE authors reason about using symbolic execution to verify patches at the granularity
of functions [12]. When comparing varying implementations of the same function, UC-KLEE

verifies that, given identical inputs, the two routines produce identical outputs. Thus, they reason
that the two functions behave the same on each input. Specifically, they ensure that both routines
“write the same values to all escaping memory locations” or otherwise “terminate with the same
errors.” Then, to cross-check two implementations of a function, UC-KLEE considers the inputs and
outputs directly, expecting that the differing versions of the function maintain the same interface
and write to the same memory locations or return variables.

Analogously, when reasoning about program-level equivalence, we consider the externally vis-

ible outputs of a program. A change to a program’s code may result in a change to the program’s
internal state along particular execution paths. However, if the externally visible outputs are iden-
tical, we conclude that the patch did not change the program’s behavior. In particular, we inspect
the externally visible system calls and seek to verify that, excepting the intended changes by the
patch, both programs exhibit identical externally visible outputs or fail on the same errors along
each execution path.

To accomplish this, KOMPARE provides a new driver program for KLEE which performs sym-
bolic execution over a selected version of the program. Constraints are gathered during execu-
tion, with which KLEE generates concrete inputs that exercise each execution path in the program.
KOMPARE than executes both versions of the program, providing these concrete values as inputs
and recording any externally visible outputs for comparison.

8

Figure 3.1: Overview of KOMPARE functionality.

Under symbolic execution, the number of potential execution paths to explore grows quickly
as branches and loops are encountered, possibly resulting in path explosion, where a prohibitively
large number of states are generated. We reason that behaviors of the program altered by the patch
are those for which modified code is executed. Then, to mitigate this issue, we additionally present
Patch-Directed Symbolic Execution, an approach for prioritizing the exploration of modified code
under symbolic execution, thereby prioritizing the analysis of behaviors possibly affected by the
patch. This enables KOMPARE to generate inputs which explore modified code and collect results
sooner and may also prevent the symbolic execution from becoming stuck while exploring some
uninteresting subset of the program’s paths.

To direct symbolic execution towards modified code, we devise a static analysis which com-
pares the patched and original versions of the program. Like KLEE, this analysis operates on
programs which have been compiled down to LLVM bitcode representation. An overview of our
Patch-Directed Symbolic Execution approach is illustrated in Figure 3.2. First, we perform a static
analysis which compares the two versions of the program, assigning weights to basic blocks which
differ between the versions (step 1). Then, these weights are used to generate priorities for in-
structions, which are back-propagated through the program in a similar manner to AGAMOTTO [7]
(step 2). These priorities are then used by KOMPARE to direct symbolic execution towards code
with the highest priority, i.e. code that will either execute or lead to the execution of modified code
(step 3).

If we exhaustively explore paths under symbolic execution, we will have determined that for
all inputs whether the patch has changed the behavior of the program. This may not be possible,
as mentioned, due to difficulties in path explosion or constraint solving. However, the more time
KOMPARE is given to run, the closer its analysis will be to complete, since KOMPARE tests paths
as the respective concrete inputs are generated. Furthermore, by directing symbolic execution

9

Figure 3.2: Overview of Patch-Directed Symbolic Execution. Step (1) represents the programs
as control-flow graphs. In step (2), instructions are annotated with their priorities. Note that
the priority assignment is given in psuedocode, whereas this process operates on LLVM code in
KOMPARE. Step (3) compares KLEE’s default state exploration strategy to KOMPARE’s patch-
directed strategy, where (c) is prioritized over (b).

towards patch-modified code, this approach is more likely to expose the differences between the
versions of the program earlier in the analysis.

An overview of KOMPARE’s design is provided in Figure 3.3. KOMPARE takes as input the two
program versions in LLVM bitcode format and outputs a report of which concrete test cases ex-
hibited differences in the program output. On itialization, KOMPARE performs a static analysis to
determine the differences between the programs (step 1, elaborated in §3.1), which is used to direct
symbolic exeuction towards the modified code. Then, KOMPARE performs it’s program compar-
ison, described in §3.2. First, KOMPARE begins symbolic execution of the patched version of the
program (step 2). Whenever a test case is generated, KOMPARE begins concrete executions of this
test case on both versions of the program (step 3) and compares the outputs to determine if the pro-
grams behaved the same for this input (step 4). Steps 2 through 4 occur concurrently: KOMPARE

performs it’s concrete executions and comparisons while symbolic execution is ongoing.

3.1 Patch-Directed Symbolic Execution

In symbolically executing the program to generate inputs for the comparison, we are primarily
interested in exploring the code which has been directly modified by the patch, reasoning that
the program behaviors which are affected by the patch occurs along paths which execute directly

10

Figure 3.3: Example control-flow graphs of an original (left) and patched (right) program, where
the patch adds a new basic block labelled “patch” between the block BB3 and the exit block, BB4.

modified code. The goal is then to prioritize the exploration of states which execute or lead to the
execution of modified code. Memory aliasing may pose a challenge this assumption, discussed
further in §6.2. We take an approach similar to DiSE’s [9] static analysis to determine the differ-
ences between the programs and direct execution accordingly. A key difference is that DiSE prunes
paths for which a particular sequence of impacted nodes have already been covered, whereas, with
KOMPARE, we’re interested in analyzing all paths subsequent to modified code.

To achieve this, we devise a static analysis which compares the patched and original versions
of the program. As before, the choice of which version should be considered patched and original,
respectively, is arbitrary, and in order to maintain completeness in our program comparison, we
will perform this analysis on both, considering each the “patched” version in turn. This analysis
first assigns a weight value to each instruction in the patched version of the program (i.e. the target
version for symbolic execution) such that non-zero weight is given to the code that differs between
the two versions.

In order to compare the two versions of the programs, we must consider both the contents of
the basic blocks as well as the control flow of the program. Since the instructions of each basic
block must execute sequentially and entirely, the analysis can assign weights at the granularity of
basic blocks instead of instructions. Consider the example control flow graphs in Figure 3.3. Here,
a new basic block “patch” is inserted between the basic blocks named “BB3” and “BB4,” and the
other basic blocks remain unchanged. The goal of the analysis is to assign non-zero weight only
to the basic block “patch.” If, for instance, weight is assigned to the exit block, “BB4,” KOMPARE

may prioritize the path through BB2, delaying its analysis of the code introduced by the patch.

11

1 %4 = alloca i32, align 4
2 store i32 100, i32* %4, align 4, !dbg !18
3 ...
4 %7 = alloca i32, align 4
5 store i32 100, i32* %7, align 4, !dbg !22

Listing 3.1: Two equivalent LLVM instructions which store the constant
value 100 to an allocated stack variable.

At a high level, the analysis operates as follows: for each function in the patched version of
the program, it attempts to find a function of the same name in the original program. If no such
function exists, the entire function is marked as differing. Otherwise, each basic block in the
patched version is compared against each basic block in the original. First, they are compared
for equivalence while ignoring control flow (i.e. by skipping branching instructions). In this step,
two basic blocks are considered equivalent if all their non-branching instructions are equivalent and
occur in the same order. This necessitates a notion of instruction equivalence, which we describe in
§3.1.1. Next, the equivalent basic blocks are compared for control flow differences. Once weights
are assigned, we compute priorities for each instruction by back-propagating weights through the
program, such that instructions which execute or lead to the execution of patch code are given
highest priority.

3.1.1 Instruction Equivalence

First, we define a notion of instruction equivalence between the two versions of the program. We
consider two LLVM instructions to be equivalent if they perform the same operations on equivalent
operands. Constant operands, such as string literals, can be compared directly. Additionally, we
consider non-constant operands to be equivalent between the two programs if they are output by
two equivalent instructions. LLVM’s single-static assignment form guarantees that each variable is
only assigned once, so that for each operand, we need only consider the instruction which assigns
it a value. Furthermore, metadata (such as debug locations) can be ignored as they do not affect
the outcome of the instruction.

Consider, for example, the store instructions in Listing 3.1. Both of these instructions store
the constant value 100 the stack variable of their operand, each of which has allocated to it a
32-bit integer by the previous, equivalent alloca instructions. Although the operand variables
have different labels and the instructions have different metadata, we can still consider these store
instructions equivalent.

In implementing KOMPARE, we define a function which compares two instructions for equiva-
lence. First, it checks that the two instructions are identical, ignoring metadata and operand labels.

12

Then, it recursively checks that the instructions which define each non-constant operand are also
equivalent. To prevent repeating recursive queries, the function memoizes, for any two instruc-
tions, its previous decision on their equivalence.

3.1.2 Assigning Weights and Priorities

Given a notion of equivalence between two instructions, the analysis iterates through each function
of the patched program which appears in both versions of the program. Each basic block in a given
function is then assigned a weight of 0 if it has an equivalent basic block in the original function,
and 1 otherwise. This analysis occurs in two steps: first, the analysis compares each instruction
in the basic block up to and excluding the terminating instruction, thus ignoring the control flow
of the function’s basic blocks. Each basic block in the patched version is compared to each basic
block in the original version. The comparison operates by iterating through the instructions in
each basic block in order. If any pair of these instructions are not equivalent, or one basic block
contains fewer instructions than the other, the analysis has determined that the basic blocks are not
equivalent and continues to the next basic blocks to be compared.

Since this step ignores control flow, it is possible that the basic block in the patched program
is equivalent to multiple basic blocks in the original version. This occurs more often for small
basic blocks performing simple tasks, such as those which load a return value and branch to the
function’s exit block. Therefore, for each basic block in the patched function, we maintain a set of
equivalent basic blocks from the original function.

Next, for each basic block in the patched version, we compare the control flow for all equivalent
basic blocks. This check is simple: for each pair of equivalent basic blocks, the analysis verifies
that each of the successor blocks are equivalent along each of the branch conditions. If any of the
successors are not equivalent, the basic block weights are updated to mark them as differing. It
would be apt to mark the successor with no equivalent basic block as differing as opposed to the
predecessor block, since the code subsequent to the modified branch is the target for the symbolic
execution. However, it is sufficient (and much simpler in implementation) to mark the parent basic
block as differing, such that the symbolic execution will prioritize reaching the parent basic block
and then explore all subsequent paths according to their respective weights.

At this point, each differing basic block is assigned a weight value of 1, and the blocks which
have an equivalent in the original program are assigned a weight of 0. Once weights are computed
for each basic block, priorities are assigned to each instruction in the program. Like AGAMOTTO

[7], we perform back-propagation using the computed weights so that each instruction is given a
priority equal to the number of reachable modified instructions. This is done by iterating through
the program’s control flow from the end points to the entry point. The priority assigned to each

13

instruction is equal to the weight of the basic block which contains it plus the maximum priority of
all reachable instructions from that point. These priorities can then be used by KLEE’s simulator to
prioritize executing modified code by selecting the state with the highest priority when determining
which state to execute. In §4.2, we discuss the extension we implement in KLEE to accomplish
this.

3.2 KOMPARE’s Comparison Analysis

Steps 2 through 4 of KOMPARE’s functionality, outlined in Figure 3.3, perform KOMPARE’s pro-
gram comparison analysis, which we describe in this section. Before this analysis is performed,
KOMPARE performs the static analysis for determining the difference between the versions, de-
scribed above, and the symbolic execution performed in Step 2 is patch-directed. However, this
comparison analysis does not depend on Patch-Directed Symbolic Execution and can be performed
without it.

The approach we take in KOMPARE to compare the two versions of the program is as follows:
first, we begin symbolic execution of the patched version of the program. As the symbolic execu-
tion reaches the end of a path or a potential error, the constraints are solved to generate a concrete
input which would exercise that particular execution path or expose that error. Then, we perform
concrete execution of both versions of the program for each generated program input, during which
we record all externally visible outputs for comparison. After all symbolically-explored paths have
been compared, KOMPARE reports which test cases exposed differences between the versions of
the program.

3.2.1 Removed Program Paths

As a consequence of only symbolically executing one version of the program, in particular the
version of the program with the patch applied, this approach can only consider the execution paths
added or changed by the patch. It cannot consider those paths removed by the patch. Consequently,
any differing program behaviors caused by a removed execution path may be missed, unless the
input generated by the constraints for the patched version happens to expose this difference.

Consider, for example, the functions in listings 3.2 and 3.3. Here, the patch to the function
func has removed the check for the input x == 10. If we explore the patched version of func
symbolically, we will find that there is only one possible execution path. Then, for any concrete
input we generate such that x is not equal to 10, we will conclude that both functions have the same
behavior (and indeed, for that particular input, they would). If the input we generate happens to
be 10, we will observe this difference. However, if we consider the function with the branch to be

14

1 int func (int x) {
2 if (x == 10) {
3 return 1;
4 }
5 return 0;
6 }

Listing 3.2: A simple example function in C
with a branch.

1 int func (int x) {
2

3 // if branch removed by patch
4

5 return 0;
6 }

Listing 3.3: The same example function with
the branch removed, as though by a patch.

the patched version (i.e. that the patch added the path instead of removed it), then we will discover
both paths during symbolic execution and determine that the functions behave differently only on
the input x == 10.

Clearly, symbolical execution of only the patched version of the program introduces a challenge
to the soundness of our analysis. Thus, a straightforward approach we take to enable the explo-
ration of the removed program behaviors is to perform this technique by symbolically executing
both the original and patched versions of the program in turn. In §6.1, we discuss additional tech-
niques that may be applied to improve the performance of this analysis, as this will result in the
analysis of many paths which have been analyzed previously.

3.2.2 Concrete Executions and Output Comparison

Throughout the symbolic execution, KOMPARE collects the generated inputs executes both ver-
sions of the program with them, during which outputs are collected for comparison. The specific
outputs to be compared depends on the program being analyzed. For instance, we may be in-
terested in inspecting data sent along particular buses for an embedded system. As mentioned,
the outputs we consider in KOMPARE are those which occur in output system calls made by the
program (such as write, printf, fputs, etc.). In §4.1, we discuss how KOMPARE records the
outputs sent to these system calls. These outputs are compared to determine if the two versions of
the programs exhibit the same behavior or fail on the same error for that particular input.

The output comparison performed by KOMPARE is defined in a function, elaborated with re-
spect to KOMPARE’s implementation described in §4.1. The default comparison strategy we take is
to check that the outputs are entirely identical. This comparison is sufficient for patches which we
expect not to change the program’s functionality along all or most paths. However, patches may
affect a program in various ways and the outputs of certain programs may require closer inspection
to compare. Therefore, the output comparison function used by KOMPARE should be specified
with respect to the program and patch to be analyzed. Furthermore, this comparison function may
be used to verify that the output is itself correct for the patched version of the program. In §6.1.1,
we discuss some such cases and how the output comparison may account for them.

15

CHAPTER 4

Implementation of KOMPARE

In this chapter, we discuss the implementation of KOMPARE, our extension to the KLEE [2] sym-
bolic execution engine described in §3. KOMPARE implements a new driver program which creates
instances of KLEE to symbolically execute the target and collects the results to perform the output
comparison. Additionally, we implement the patch-direct symbolic execution algorithm in KLEE,
which performs a static analysis to determine the difference between the two versions and then
drives symbolic execution towards the modified code.

4.1 KOMPARE Driver

We implement a new driver for the KLEE engine which we call KOMPARE. Since this is built
upon KLEE, which symbolically executes a program that has been compiled to LLVM bitcode,
we require LLVM bitcode representations of the target program. KOMPARE takes as input two
programs: the original program and the patched program. The patched version is the one which
will be explored symbolically under KLEE, an instance of which is spawned by the KOMPARE

driver. As mentioned in §3.2.1, in order to ensure the soundness of KOMPARE’s analysis and
explore all paths removed by the patch, we run the KOMPARE driver twice, considering each
version of the program to be the “patched” version in turn.

As the instance of KLEE which is symbolically executing the patched version of the program
reaches the end of an execution path or a potentially failing instruction, it outputs test cases which
would exercise the path or produce the failure under a concrete execution. These test cases are col-
lected by the KOMPARE driver, and for each test case, KOMPARE spawns two additional instances
of KLEE which replay the test case on both the patched and original versions of the program, col-
lecting any externally-visible outputs (particularly system calls which write data) for comparison.
Simulating the concrete executions using KLEE instead of comparing the outputs of native program
executions makes analyzing two versions of the program convenient, as the versions only need be
compiled to LLVM bitcode for the entire analysis to take place. Furthermore, it also simplifies the

16

process of capturing the externally visible outputs for comparison.
To capture the externally visible outputs, we implement wrappers for the system calls of inter-

est, including system calls such as write, fwrite, printf, fputs, and so on. These wrapper
functions are implemented within KLEE’s symbolic POSIX runtime, and have the string kcmp

prepended to their name (as in kcmp write). Then, as an additional step when linking the target
program in KLEE, the symbols for these system call functions have the string kcmp prepended to
them, such that, during execution, the wrapper functions are called instead. When called, these
wrapper functions append the output they receive to a file before proceeding as normal.

Once both versions have completed execution for the given input and their outputs are collected,
KOMPARE executes a function to compare the results and determine if they match. By default, this
function compares both output files line-by-line, reporting a mismatch if the files are not identical.
This function can easily be replaced to account for expected differences in output formats or to
support smarter output comparisons. For example, in §5.2.1, we evaluate a patch which replaces
one encryption function with another, providing an output comparison function which accounts for
this difference. Finally, KOMPARE produces a report which lists for which generated test cases the
outputs of the two programs match or differ.

In order to evaluate a patch with KOMPARE, the program must have its two versions—the
version with the patch applied and the version without—compiled to LLVM bitcode format, with
both versions provided as input to KOMPARE. Then, wrapper functions should be added to the
KOMPARE POSIX runtime for all functions whose outputs we are interested in capturing and
comparing. If we expect the target to have differences in the output format, a smarter comparison
function may also be provided to the KOMPARE driver such that only paths whose outputs differ
in unexpected ways will be reported.

4.2 Patch-Directed Symbolic Execution

To increase the efficiency of this comparison analysis, as discussed in §3.1, we implement an
additional extension to the KLEE engine which performs a static analysis to determine the locations
of patch-modified code and drive symbolic execution towards those locations. KLEE provides an
interface for a “searcher” class, which determines the order in which KLEE will execute possible
states. The implementation of Patch-Directed Symbolic Execution is in two components: a class
which performs the program analysis and a new searcher in KLEE which uses the results of the
analysis which determine which states to execute. We call this new searcher class the Patch-Priority
Searcher.

The static analysis is performed upon initialization of the Patch-Priority Searcher (and thus only
once on KLEE’s initialization). It iterates through the control flow of the symbolic execution target

17

program, computing weights and priorities for instructions using the algorithm described in §3.1.2.
This class then maintains two data structures which are used by the searcher class: a mapping from
instruction pointers to priorities and a set of instruction pointers which have been identified as
modified from the original version of the program.

A searcher class in KLEE maintains a data structure of current states, and at each iteration
of the program’s execution, KLEE’s interpreter queries the searcher for the next state to execute.
Each state that is added or updated is assigned a weight by the Patch-Priority Searcher based
on the priority of the instruction it will execute next, computed by the initial program difference
analysis. Additionally, whenever an execution state executes some modified code for the first time,
it is marked as having done so. The Patch-Priority Searcher than maintains a priority queue of
candidate states for execution. States which have already executed modified code are prioritized
over states which have not yet, and ties between state priorities are broken by prioritizing older
states (i.e. states which have executed more instructions). Since priority is assigned as the number
of patch-modified instructions reachable from a given instruction, paths which execute a greater
number of modified instructions are prioritized.

Effectively, when current no state has reached modified code, the searcher will prioritize fol-
lowing a patch which executes modified code as quickly as possible. However, once modified code
is reached, the searcher prioritizes exploring all possible subsequent execution paths, reaching the
end of each path as quickly as possible so the comparison analysis has test cases to consider. This
state prioritization scheme effectively causes KOMPARE to compare the outputs on all paths which
follow the execution of some patch code, thus demonstrating that the patch does not modify the
program behavior on any subsequent paths.

18

CHAPTER 5

Evaluation

To demonstrate the effectiveness of KOMPARE, we first take the COREUTILS program Echo and
create an example of a patch which adds a new command line option. This contrived example,
discussed in §5.1, demonstrates the effectiveness of KOMPARE’s analysis in determining the inputs
which cause the outputs of the original and patched versions to differ, as well as demonstrating the
effectiveness of patch-directed symbolic execution. We find that using patch-directed symbolic
execution enables KOMPARE to explore the modified code sooner thereby sooner exposing the
differences between the versions.

Then, we use KOMPARE to analyze some benchmark patches on embedded vehicle control sys-
tems. These benchmarks were derived from the DARPA Assured Micropatching program, demon-
strating a life-like use case where patch verification is crucial. The programs receive messages via
a control area network (CAN) bus, update the system’s state, and log the messages. We consider
two kind of patches in our evaluation: patches to the system’s logging functionality and patches
which correct vulnerabilities in the transport protocol. For the former, we are interested in demon-
strating that the outputs on all paths match besides the expected change. For the latter, we want to
demonstrate that the vulnerability no longer occurs and that the outputs match on all other paths.

Before these benchmarks may be evaluated in KLEE, they must be compiled down to LLVM
bitcode. KOMPARE makes the analysis of these particular benchmarks convenient by simulating
the concrete executions in KLEE as well, since compiling and running these embedded system
benchmarks natively requires more effort and specific hardware.

We first discuss some of the changes to the benchmarks that must be made to enable their
symbolic execution. Then, we provide output comparison functions which enable our analysis
of the outputs for these benchmark scenarios. For the logging functionality patches, we find that
we are able to successfully verify the patch on all paths. For the transport protocol vulnerability
patches, we are able to verify that the execution paths for which these vulnerabilities occur in the
original program no longer occur in the patched version (that is, the outputs differ for those paths
as expected) and that the patch does not cause any unintended changes to the program behavior
(that is, the outputs match on all remaining paths).

19

Figure 5.1: A graph comparing the number of paths with differing outputs found per the number
of paths tested between KLEE’s default (random-path interleaved) searcher and KOMPARE’s Patch-
Priority Searcher.

5.1 Contrived Example

To demonstrate the capabilities of KOMPARE, we’ll consider the the contrived example of a custom
patch to the COREUTILS program Echo. We take Echo as an example since it is a simple program
with a simple output format, which can demonstrate the effectiveness of KOMPARE’s comparison
analysis as well as the impact of patch-directed symbolic execution. The patch we create adds
a command line option which capitalizes all lowercase letters in the output when enabled. For
instance, before the patch is applied, the command echo -c Hello outputs -c Hello. With the
patch applied, this same input will output HELLO. A selection of the code added by this patch is
presented in Listing 5.2. Since this patch only adds paths to the program and does not remove any
existing code paths, we only need to symbolically execute the patched version of the program for
a sound analysis of the differences between the two versions.

We analyze this patch in KOMPARE using a symbolic input of four characters, expecting the
input -c a (for any lowercase character a) to expose the difference in outputs between these two
versions of the program. During symbolical execution, KOMPARE explores 105 paths through
the program, and of them discovers 45 concrete inputs with differing outputs. KOMPARE takes 3
minutes and 10 seconds to run and compare all paths. These experiments were performed on a
server equipped with a Intel(R) Xeon(R) Gold 5318Y CPU @ 2.10GHz and 256 GB of DRAM.
The time it takes to compare all paths is limited by the execution time of the program on the

20

1 int main (int argc, char **argv) {
2

3 [...]
4

5 while (argc > 0) {
6

7

8

9

10

11

12

13

14

15

16 fputs (argv[0], stdout);
17

18 argc--;
19 argv++;
20 }

Listing 5.1: Selections from the unmodified
source code of Coreutils Echo program.

1 int main (int argc, char **argv) {
2 bool capitals = false;
3 [...]
4

5 while (argc > 0) {
6 if (capitals) {
7 const char *s = argv[0];
8 unsigned char c;
9 while((c = *s++)) {

10 if (c >= 'a' && c <= 'z') {
11 c -= 32;
12 }
13 putchar (c);
14 }
15 } else {
16 fputs (argv[0], stdout);
17 }
18 argc--;
19 argv++;
20 }

Listing 5.2: The patch applied to Listing 5.1,
which capitalizes letters in input. Not shown is
the patch code which checks for the new com-
mand line option, setting “capitals” to true.

concrete input plus the time overhead of simulating the program in KLEE; it takes only a few
seconds to simulate Echo on each concrete input.

In its analysis, KOMPARE exposed an unexpected behavior as a consequence of the patch: any
4-character input which contains some combination of possible command line options including
the -c option, such as -ce or -cec will differ in output between the two versions. In the original
version, the output will simply echo the input, and in the patched version, Echo will output nothing
on such inputs. This is because when the Echo program receives an invalid option, it will ignore
all the options and simply echo the input as any other string. With the addition of the -c option,
these previously invalid option strings are now accepted by Echo and not included in the output
string. As a consequence of this, we find a rather high proportion of paths differing (45 paths out
of the 105 explored) as KLEE explores the various combinations of command line options provided
to Echo.

Enabling patch-directed symbolic execution during this analysis adds an additional 2 minutes
and 30 seconds of initialization time during which the static analysis is performed to find the
differences between the programs. As shown in Figure 5.1, using patch-directed symbolic execu-
tion with the Patch-Priority Searcher in KLEE results in finding the the differences in the program
sooner than KLEE’s default random-path interleaved searcher.

21

Notably, it seems that the Patch-Priority searcher finds some differing paths sooner (after around
15 explored paths) and then maintains some nearly-constant delta between the two searchers. This
is a consequence of the Patch-Priority Searcher’s prioritization of paths which have already ex-
ecuted modified code. Effectively, the searcher prioritizes reaching modified code as quickly as
possible and then explores all subsequent paths, therein prioritizing paths which contain some ad-
ditional modified code themselves, exhausting all subsequent paths before backtracking to explore
previously encountered paths.

5.2 Embedded Systems Patching Benchmarks

We use KOMPARE to analyze benchmarks of patches to embedded vehicle control systems. The
system receives messages on its CAN bus in accordance with the J1939-21 transport protocol
and updates its state accordingly. Then, the system encrypts and logs the messages. In addition
to patching out a particular vulnerability in the system, each of the benchmarks presents some
additional challenges towards symbolically executing and analyzing the program.

To run these benchmarks with symbolic input, we create a wrapper program which first initial-
izes symbolic CAN frames, which will be received by the benchmark program, before calling the
benchmark’s main function. Additional changes to the benchmarks are also required to enable their
symbolic execution. For instance, the benchmarks all run a loop until they receive a termination
signal, and this loop must be bound to a finite number of iterations so that the symbolic execution
eventually terminates. As with any symbolic program exploration, increasing the number of main
loop iterations executed in (or CAN frames sent to) the program will cause the number of possible
paths to explore to grow exponentially.

Moreover, we provide function stubs for certain library functions. This includes system library
functions, such as network socket functions, as functions which interact with an external environ-
ment pose a challenge for KLEE. KOMPARE already provides wrappers for system output functions
(e.g. fwrite and fputs) so that the externally visible outputs can be captured and compared. In
addition, we provide a definition for the read function, which is called by the benchmarks at each
iteration of the main loop, and which feeds the symbolic CAN frame into the program.

The benchmark also uses OpenSSL functions, which, even with their LLVM bitcode provided
to KLEE, are challenging to symbolically execute. Cryptographic functions are unfeasible to sym-
bolically execute as that would require constraint solvers to invert values which, by design, is hard
to do [3]. To enable the analysis of these programs, we create simple versions of these functions
which behave the same (sharing the same interface and output format) as their OpenSSL coun-
terparts and that can be efficiently symbolically executed. This is similar to KLEE’s modeling of
external environment calls: although these functions are not as robust nor secure as OpenSSL en-

22

cryption functions, they enable us to reason about the effect of the patch on the program as they
maintain the same input and output formats.

5.2.1 Logging Functionality Patches

One patch we analyze is applied to the benchmark’s logging system: all traffic received on the CAN
bus will be encrypted and then logged. The vulnerability occurs in a deprecated DES3 decryption
function, and the patch resolves this by exchanging DES3 for AES-256 encryption. After each
CAN message is received, the program will log the current state of the system in addition to
the encrypted CAN message. These writes to the log file will be recorded by KOMPARE and then
compared to ensure the patch does not affect the program behavior, such as by causing the program
to unexpectedly fail or produce incorrect changes to the system’s state.

For this benchmark, we expect the output to differ consistently for every input: where it pre-
viously logged the result using DES3 encryption, we will find the result of AES-256. All other
outputs should be unaffected. Therefore, we must provide a new comparison function to KOM-
PARE. We expect both encryption schemes to output the same number of bytes, so our comparison
function first ensures that all outputs are identical up to the encrypted CAN message, and then
ensures both encrypted CAN messages share the same length. This function is implemented in
about 20 lines of code.

We analyze the benchmark with KOMPARE to verify that the patch does not alter the program’s
behavior beyond this. With the execution bounded to two iterations, KOMPARE discovers 257 paths
through the program. To simulate and compare all 257 paths on concrete inputs takes KOMPARE

10 minutes and 34 seconds, and we find that the outputs pass the comparison function on every
path, thus verifying that the patch did not alter the program’s behavior except where desired. Since
we find that the outputs on all paths match as expected, enabling patch-directed symbolic execution
shows no difference in output; in both cases, all paths through the program are analyzed. The static
analysis for patch-directed symbolic execution took an additional minute.

A similar benchmark adds additional functionality to the logging system: now, messages are
hashed and the hashes logged as an integrity check for logged data. To increase the robustness
of the integrity check, a patch replaces a CRC-32 hash function with SHA-256. To evaluate this
benchmark, we must account for the differences in the output formats, as SHA-256 outputs a
larger hash than CRC-32. Additionally, as hash functions cannot be symbolically executed, new
simplified hash functions should be provided to model the behavior of SHA-256 and CRC-32,
respectively. Then, the analysis performs similarly to the previous benchmark discussed, verifying
that the outputs match as expected for all inputs.

23

5.2.2 Transport Protocol Vulnerability Patches

Some of the benchmarks provide patches which address vulnerabilities in the provided implemen-
tations of the J1939-21 transport protocol. As with the other benchmarks, the goal of our analysis
is to verify that these patches do not change the behavior of the program in unintended ways by
verifying that the externally visible outputs match on all expected paths.

One such vulnerability in this implementation is that, when copying packets into the receiving
buffer, if more frames are received than anticipated, the data will continue to be copied to the
buffer causing an overflow. To solve this, a patch is added which checks the number of packets
being copied against the sequence number of the packet received. For this benchmark, we find
that symbolic analysis becomes stuck on a difficult constraint unless some of the bytes in the
CAN frame are made to be concrete. These values were recorded manually during a concrete
execution which exercises the paths through the program we are interested in. As a consequence
of concretizing a portion of the input, the number of paths which can be explored symbolically is
limited. Additionally, for this benchmark, output comparison was simple: since we expect both
versions of the program to maintain the same output for any input that does not cause the buffer
overflow, we can compare them exactly using the default comparison function in KOMPARE.

Here we have a patch which removes vulnerable behavior, and as discusses in §3.2.1, we need
to run KOMPARE twice for a complete analysis, symbolically executing both versions in turn.
Symbolically executing the patched version with the partially concretized input reveals twenty
paths through the program, for which the the output matched on all of them, successfully verifying
that the patch resolved the buffer overflow error without affecting the behavior of the program.
Symbolically executing the vulnerable version reveals twenty-eight paths through the program, the
additional eight of which differed between the two versions in output as, in the vulnerable version,
they did not complete execution in KLEE on encountering the buffer overflow error.

Another benchmark corrects a vulnerability related the J1939-21 transport protocol’s connec-
tion management: when a connection is made, the size of the data is provided as a parameter, and
a patch is made to correct a vulnerability where the anticipated data size is not checked against the
maximum allowed by the J1939 standard. This benchmark also adds code to the system which,
when run under KLEE with a symbolic CAN frame, requires indexing into a large array using a
symbolic value. KLEE cannot handle this path explosion, as each valid index in this large array
creates a possible execution path. The execution proceeds prohibitively slow, therefore requiring
further concretization of the input, namely the entire CAN identifier. Again, further increasing the
amount of concretized input limits symbolic exploration of the program. As with the previously
discussed benchmark, we are able to only about to analyze the program on explored paths and
verify that the outputs match on both versions of the program.

24

CHAPTER 6

Discussion

In this chapter, we discuss some of the limitations, potential improvements, and future work on
KOMPARE. Many of the limitations in KOMPARE’s analysis, as demonstrated in analyzing the
real-world embedded systems benchmarks, occur either as limitations of the KLEE engine or of the
constraint solver. In this section, we propose techniques to alleviate these challenges, including
those which involve the techniques of existing symbolic execution patch verification tools dis-
cussed in §2.2. Another potential improvement discussed is path pruning, which may reduce the
cost of KOMPARE’s analysis. Although KOMPARE does have a conservative path-pruning approach
implemented, we find it to be ineffective in practice, and discuss how this might be made useful
in the future. We additionally discuss potential improvements for KOMPARE’s output comparison
functionality.

6.1 Improvements to KOMPARE’s Analysis

A potential improvement to the scalability of KOMPARE’s analysis is to consider partial program
executions instead of complete ones. Concrete inputs may be generated along paths which stall
during symbolic execution, solved from the constraints gathered up to such a point, and these
inputs may then be used to compare the two versions of the program for differing behavior. While
such partial executions may not result in a complete analysis of the program, doing so may allow
for a greater number of paths to be compared in the face of symbolic execution challenges.

Techniques discussed in previous work might be applicable to improve the performance of
KOMPARE’s comparison analysis. One such example is the automated concretization of input for
dynamic symbolic execution, as used in DART [4] and ER [14]. In evaluating some of the embedded
systems benchmarks, we discovered that, as these limitations occur in KLEE, KOMPARE was unable
to analyze paths which gathered constraints too complex for the solver. These works have shown
that it is possible to concretize values which direct symbolic execution towards target code in the
program, and such techniques might be applicable to KOMPARE to more efficiently reach modified

25

code or to enable the exploration of additional paths in the program where the constraints are too
difficult to solve.

Another performance consideration, discussed in §3.2.1, is that, as a consequence of only sym-
bolically executing a single version of the program, code paths removed by the patch will be
missed. To ensure the completeness of our analysis, we run KOMPARE twice on each benchmark.
However, this results in KOMPARE analyzing paths which were analyzed previously, wasting time
and computation. A more efficient approach may involve shadow symbolic execution, as pre-
sented in SHADOW [5, 8], wherein a single, unified program binary is explored symbolically, and
where execution forks both on branches in the program and divergences between the versions.
This would effectively enable KOMPARE to generate inputs that explore removed behaviors dur-
ing its symbolic execution, with which it can perform the output comparison as before for a more
cost-effective complete analysis.

6.1.1 Output Comparison

The default output comparison provided by KOMPARE checks that the outputs of both versions of
the program are identical and reports a difference otherwise. This is undesirable for programs for
which the output occurs in a nondeterministic order, relies on randomness, or changes between
executions (such as by including a timestamp). For such programs, comparison functions may be
provided which can account for expected differences in the outputs by comparing the outputs at a
finer granularity. For instance, the comparison function may check for correctly formatted output
with regular expressions or ignore some portions of the output. In §5.2.1, we provide a comparison
function which accounts for the expected difference in the outputs when comparing them, since
the patch changed the format of the program’s output along every path. Currently, these output
comparison functions must be implemented within the KOMPARE driver, however it would be a
simple and convenient change to allow the users to specify their comparison function externally
and provide it to KOMPARE.

These output comparison functions may also be used to assert certain properties of the output.
In doing so, KOMPARE can verify not only that the patch does not alter the program’s behaviors
in unexpected ways, but that the patch correctly solves the problem at hand. For example, in
the aforementioned benchmark which exchanges DES3 enryption for AES-256, the comparison
function might collect and decrypt the logged output and report an error if the output for the
patched version is not correct. Thus, a more intelligent comparison function could additionally
verify that the patch indeed behaves correctly with regard to the vulnerability it has patched.

26

6.2 Pruning Execution Paths

As the program is being symbolically executed, it is possible that constraints gathered along a
path become too complex for the solver, thus stalling the program’s execution. Furthermore, the
symbolic execution of unmodified code (i.e. code that may not be interesting for this problem
domain) may be obstructively slow, preventing the comparison analysis from reaching code which
exposes differences in the versions’ outputs. By directing symbolic execution towards patch code,
we explore modified code and its effects sooner than unmodified code. Running the analysis
for a fixed amount of time would then effectively prune paths which are not reached later in the
analysis. Nevertheless, it may be advantageous to prune uninteresting execution paths as they are
encountered, thus decreasing the cost of comparison analysis [9].

We reason that states which do not execute, have not executed, and will not lead to the execution
of modified code will exhibit the same behavior for both versions of the program. Thus, we can
conservatively consider any such states as candidates for pruning. Once modified code has been
executed along a particular path, we are interested in analyzing all subsequent paths through the
program to determine if the change in the code has caused any unexpected changes to the program’s
behavior. Therefore, once modified code has been executed along a path, it will no longer be
considered a candidate for pruning by this approach. If the paths we prune do not affect the
soundness of KOMPARE’s analysis, we expect that, while pruning uninteresting paths, KOMPARE

will report the same number of paths with differing outputs while evaluating fewer paths overall.
In KOMPARE, we implement this approach for pruning paths, taking advantage of the existing

instruction priority calculations. After back-propagating priorities, an instruction which cannot
lead to the execution of modified code will have a priority of 0. Therefore, whenever a state
is added or updated in the Patch-Priority Searcher, KOMPARE determines if that state may be
discarded, effectively pruning the path. KOMPARE first checks that the state’s previous instruction
was a branch (that is, this state is one that followed a particular path from a branch). Then, if the
state has a priority of zero and no modified code has previously been executed to reach this state,
the state is not added to the priority queue. Additionally, when a new state is added whose parent
has been marked as having executed modified code, the new state will similarly be marked and not
be considered for pruning.

We find that this pruning strategy is ineffective in practice. On the example of a patch which
adds a new command line argument to the COREUTILS Echo program, discussed in §5.1, we
find that KOMPARE is not able to prune any paths. This is a consequence of how the patch is
implemented: line 2 of Listing 5.2 shows that the patch adds an additional variable to the main
function of program. Changes to the program’s control flow similarly pose a challenge for this
simple path pruning. Consider line 16 in Listing 5.1. Here, the call to fputs becomes wrapped

27

in a branch condition on a variable introduced by the patch. Consequently, the paths which would
maintain the same behavior would need to still be explored fully, even if the modified variable
initialization did not occur in the program’s main function. Then, all paths through main (thus
all paths through the program) will execute modified code, so none may be considered candidates
for pruning by this strategy. Similarly, no paths are pruned in the embedded systems benchmarks
which modify the system’s logging or connection-handling functionality, as every CAN frame
which is received by the program is subsequently logged.

These examples demonstrate that this conservative method is ineffective when modified code is
reached early during execution or along each path, motivating a more intelligent approach towards
path pruning. For instance, a data-flow analysis, similar to that used by DiSE [9], can be used to
determine which variables in the program are modified by the patch and which paths subsequently
use the modified variables. Then, paths which are affected by the modified code but which do
not operate on modified variables might be considered for pruning. However, memory aliasing
presents a challenge for such an approach. Program behavior on such a seemingly unmodified
path may have it’s behavior affected by the patch if modified code elsewhere in the program writes
to memory which is aliased by the unmodified code.

28

CHAPTER 7

Conclusion

In this thesis, we presented KOMPARE, a tool which uses symbolic execution for assured patching.
KOMPARE cross-checks the externally visible outputs of two versions of a program (one version
with a patch applied and the original version) to verify that the patch does not alter the behavior
of the program in any unintended ways. Additionally, when provided with an output comparison
function that accounts for the differences in outputs or asserts properties in the output, KOMPARE

can also verify correct behavior of the patch itself. To increase the efficiency of its comparison
analysis, this thesis also presented Patch-Directed Symbolic Execution, a technique to prioritize
the symbolic execution and analysis of code modified by a patch. Given the two versions of the
program as input, KOMPARE performs a static analysis to determine the programs’ differences
and uses these differences to drive symbolic execution towards the modified code as quickly as
possible.

We evaluated KOMPARE with an example patch to demonstrate its operation on a patch which
changes the behavior of the program along certain paths. Then, we used KOMPARE to analyze
benchmarks for patches to an embedded control system’s logging functionality and corrections
to particular transport protocol vulnerabilities. We found that for the former, KOMPARE is suc-
cessfully able to demonstrate that the patches do not change the behavior except where intended.
KOMPARE additionally verifies, for the latter, that the patches also remove the vulnerabilities in
the system. We found that KOMPARE’s analysis is limited by some of the known challenges in
symbolic execution, and discuss some techniques which may be applied to mitigate the impact of
these challenges.

29

BIBLIOGRAPHY

[1] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene Finoc-
chi. A survey of symbolic execution techniques. ACM Computing Surveys, 51(3), 2018.

[2] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, OSDI’08, page 209–224,
USA, 2008. USENIX Association.

[3] Ricardo Corin and Felipe Andrés Manzano. Efficient symbolic execution for analysing cryp-
tographic protocol implementations. In Úlfar Erlingsson, Roel Wieringa, and Nicola Zan-
none, editors, Engineering Secure Software and Systems, pages 58–72, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[4] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated random test-
ing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’05, page 213–223, New York, NY, USA, 2005. Associa-
tion for Computing Machinery.

[5] Tomasz Kuchta, Hristina Palikareva, and Cristian Cadar. Shadow symbolic execution for
testing software patches. ACM Trans. Softw. Eng. Methodol., 27(3), sep 2018.

[6] Paul Dan Marinescu and Cristian Cadar. Katch: High-coverage testing of software patches.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ES-
EC/FSE 2013, page 235–245, New York, NY, USA, 2013. Association for Computing Ma-
chinery.

[7] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, Simon Peter, and Baris
Kasikci. AGAMOTTO: How persistent is your persistent memory application? In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), pages
1047–1064. USENIX Association, November 2020.

[8] Hristina Palikareva, Tomasz Kuchta, and Cristian Cadar. Shadow of a doubt: Testing for
divergences between software versions. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pages 1181–1192, 2016.

[9] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. Directed incremental
symbolic execution. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, page 504–515, New York, NY, USA, 2011.
Association for Computing Machinery.

30

[10] Weizhong Qiang, Yuehua Liao, Guozhong Sun, Laurence T. Yang, Deqing Zou, and Hai Jin.
Patch-related vulnerability detection based on symbolic execution. IEEE Access, 5:20777–
20784, 2017.

[11] David A. Ramos and Dawson Engler. Under-constrained symbolic execution: Correctness
checking for real code. In Proceedings of the 24th USENIX Conference on Security Sympo-
sium, SEC’15, page 49–64. USENIX Association, 2015.

[12] David A. Ramos and Dawson R. Engler. Practical, low-effort equivalence verification of real
code. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification,
pages 669–685, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[13] Neha Rungta, Suzette Person, and Joshua Branchaud. A change impact analysis to charac-
terize evolving program behaviors. In 2012 28th IEEE International Conference on Software
Maintenance (ICSM), pages 109–118, 2012.

[14] Gefei Zuo, Jiacheng Ma, Andrew Quinn, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci.
Execution reconstruction: Harnessing failure reoccurrences for failure reproduction. In Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2021, page 1155–1170, New York, NY, USA, 2021. As-
sociation for Computing Machinery.

31

	Acknowledgments
	Table of Contents
	Abstract
	Introduction
	Background
	Symbolic Execution
	Symbolic Execution for Patch Verification

	Design of Kompare
	Patch-Directed Symbolic Execution
	Instruction Equivalence
	Assigning Weights and Priorities

	Kompare's Comparison Analysis
	Removed Program Paths
	Concrete Executions and Output Comparison

	Implementation of Kompare
	Kompare Driver
	Patch-Directed Symbolic Execution

	Evaluation
	Contrived Example
	Embedded Systems Patching Benchmarks
	Logging Functionality Patches
	Transport Protocol Vulnerability Patches

	Discussion
	Improvements to Kompare's Analysis
	Output Comparison

	Pruning Execution Paths

	Conclusion
	Bibliography

